Implant therapy of edentulous sites

Author_ Dr Peter Windisch

Fig. 1a Clinical view of tooth 12 prior treatment with similar recession on tooth 13. Distal papilla of 11 is missing.

Fig. 1b Standardised X-ray at baseline. The #12 tooth has a deep intrabony defect on the mesial aspect.

Fig. 2&3 - Advanced periodontal breakdown at the upper right lateral incisor. The bony defect involves the buccal plate of bone. The neighbouring tooth has also intrabony periodontal defect.

Deep periodontal defects with advanced bone loss of the buccal cortical plate represent a challenge for periodontal treatment in the upper front region. Literature data suggest that one and two-wall periodontal defects do not have tendency for complete periodontal regeneration and bone fill (Eickholz et al. 1996, 1998, 2000). Remaining residual pockets can also jeopardise the long term result of periodontal treatment (Matuliene et al. 2008). Tooth extraction in the upper front region even without any periodontal defect will result in certain amount of oro-vestibular and eventually vertical shrinkage of the original soft tissue contour (Schropp et al. 2003). Due to bone remodelling appropriate implant placement cannot be achieved in most of the cases. Socket preservation and different alveolar site developments are used to offset this unfavourable feature (Camargo & Lekovic, 2004; Lekovic & Kenney, 1997). It is obvious that the application of one of these techniques can be of great importance when tooth extraction is being considered at periodontally compromised teeth with advanced buccal plate involvement. It is not clear that ridge preservation procedures are effective in limiting horizontal and vertical ridge alterations in postextraction sites. Comparing the clinical and histological results obtained by different preservation techniques there is no literature data to support the superiority of one
Milled Implant restoration

All inclusive pricing by MediMatch!

Porcelain Bonded Restoration (Co-Cr)

+ Cad/Cam Milled Abutment (Co-Cr)

For just £ 280,-

Full ceramic cement retained restoration:

* Zirconia Crown + Zirconia abutment with Ti base = £ 365
* E.max crown + Zirconia abutment with Ti base = £ 350

*Screws are not included *Analogues are not included

Our Cad/Cam abutments may vary in design from the original. Please call and find out if we have your brand and platform available (in our database). MediMatch will only make abutments when part of a restoration. MediMatch will not supply the screw for the final work; it is best to use a new screw from the original brand when the work is being fitted.

T: 08 444 993 888
MediMatch Dental Laboratory

Your -Private- Dental Lab

Terms and conditions apply. The alloy is charged per gram on the day of casting and is not included in the above prices. Price is correct on day of going to press. MediMatch has the right to amend or terminate this promotion at any time. Protocols are for guidance only. No clinical decision should be based on the above information. MediMatch cannot be held responsible for any clinical decision whatever advice has been given in writing or verbally.
technique over another (Darby et al., 2009). Nevertheless each preservation technique provided better results than natural socket wound healing (Barone et al., 2008). The effect of extraction site development on the changes of attachment level of neighbouring teeth has not been clarified yet.

While supraalveolar periodontal regeneration is still unpredictable (Sculean et al., 2004) vertical ridge augmentation has been successfully demonstrated in several publications (Barboza EP., 1999; Urban & Jovanovic, 2009; Merli & Lombardini, 2010; Beitlitum et al., 2010). Treatment of vertical ridge deficiencies has been performed in edentulous areas without neighbouring teeth demonstrating advanced periodontitis. It was suggested that natural teeth with advanced periodontitis, may impose a risk for an infection of the augmented site and of membrane exposure originating from the neighbouring periodontally compromised teeth (Karoussis et al., 2003; Hoffmann et al., 2007). Nevertheless in certain clinical situations, teeth presenting deep intrabony defects are located in close vicinity of the compromised alveolar ridge.

In these particular cases, it is of clinical interest to simultaneously reconstruct both the intrabony periodontal defect and the resorbed alveolar ridge, thus allowing proper insertion of dental implants. For those implant patients having a history of chronic periodontitis it is inevitably important to reduce periodontal pockets at natural teeth to 3mm and even below to facilitate proper individual plaque control and to reduce the chance of periodontal reinfection (Carnevale et al., 2007).

The importance of proper implant positioning and adequate amount and quality of perimplant hard and soft tissues have to be considered to maintain long term stability around implants. Therefore, the aim of the present cases was to evaluate the effect of a new step-by-step surgical technique designed to simultaneously reconstruct resorbed alveolar ridge and the adjacenttely located intrabony defect to achieve a predictable clinical outcome and adequate peri-implant tissue stability.

Three patients exhibiting chronic periodontitis with localised advanced periodontal bone loss were referred to the Department of Periodontology,
Semmelweis University, Budapest, for comprehensive periodontal therapy. All three patients were middle aged Caucasian males (51, 50 and 49 years-old), systemically healthy and had never been smokers. Each patient presented at least one deep advanced periodontal bony defect in the upper front region. After initial therapy teeth were considered to be hopeless because of their disadvantageous pathomorphology. Before tooth extraction each patient had completed basic cause related periodontal therapy including full mouth scaling and root planing and oral hygiene training. Before surgery all exhibited high standards of oral hygiene. Treatment plan consisted of tooth removal followed by extraction site development (Surgery 1), and soft tissue augmentation (Surgery 2), and implant placement with simultaneous ridge augmentation (Surgery 3) and abutment connection with non resorbable membrane removal (Surgery 4). The following parameters were measured at baseline, immediately before augmentation procedure and 11–20 months after implant placement: plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depths (PD) around the neighbouring teeth at six sites, gingival recession (GR), clinical attachment level (CAL) with a millimetre calibrated periodontal probe (PCPUNC 15, Hu-Friedy, Chicago, IL, USA) and also intrasurgical direct measurements: the level of periodontal bone of neighbouring teeth, the width and height of the alveolar ridge. Standardised radiographs were taken with the long cone parallel technique preoperatively, between surgeries and postoperatively; for qualitative assessment of bone height.

Surgery 1– Tooth extraction with extraction site development

Following tooth removal a full thickness flap was raised up to the mucogingival line and beyond a partial thickness flap was mobilised with a horizontal extension thus allowing a tension free soft tissue management and wound closure. This flap design let the operator to evaluate and treat the periodontal defects around the neighbouring teeth. A combined alveolar site preservation technique was used with a slow resorbable membrane (Resolut Adapt LT 2530, Gore- Tex®, Newark, DE, USA) fixed with titanium pins (Tipins; DENTSPLY Friadent, Mannheim, Germany) to cover the missing part of the buccal plate and to maintain the original form of the earlier arch. Following an appropriately sized connective tissue graft was removed from the palatal mucosa by using the Hürzeler technique (Hürzeler & Weng, 1999). The harvested tissue was trimmed and sutured (5.0 non-absorbable polyamide monofilament, Braun AG, Tuttingen, Germany) to the inner surface of the partial thickness.

Surgery 2– Soft tissue augmentation

Following the above mentioned procedures if the width of the keratinised soft tissue allowed proper coverage after augmentation procedure simultaneously.
case study _ Implant therapy

Two different augmentation procedures were performed. First, bone filling in intrabony defects of the neighbouring teeth was performed using allograft (BioHorizons, Birmingham, AL, USA) and a non-resorbable membrane (FRIOS® Boneshield; DENTSPLY Friadent®, Mannheim, Germany) or a slow resorbable membrane (Resolut Adapt LT 2530, Gore-Tex®, Newark, DE, USA) was fixed over it. A tension free wound closure was achieved in all cases resulting in primary wound healing.

Surgery 4 - Abutment connection with non resorbable membrane removal

The same split thickness flap design was applied for non-resorbable membrane removal and abutment connection. After surgery patients were instructed to take antibiotics (Augmentin, 3x625 mg/day for one week). Post surgically mechanical plaque control was not performed in the surgical and adjacent area and chemical plaque control was maintained with a 0.2 per cent chlorhexidine solution twice daily (Corsodyl, GlaxoSmithKline). Sutures were removed at 14 days after surgery. Additional recall appointments including supragingival professional tooth clean-

Surgery 3 - Implant placement with simultaneous hard tissue augmentation

One implant (Straumann Bone Level, Straumann AG, Waldenburg, Switzerland, and Nobel Replace Tapered Effect, Nobel Biocare, Gothenburg, Sweden) was inserted with simultaneous 3-D hard tissue augmentation using BDX and a non-resorbable membrane (Titanium membrane—FRIOS® Boneshield; DENTSPLY Friadent®, Mannheim, Germany) or a slow resorbable membrane (Resolut Adapt LT 2530, Gore-Tex®, Newark, DE, USA) was fixed over it. A tension free wound closure was achieved in all cases resulting in primary wound healing.
Implants were scheduled biweekly for the first six postoperative weeks. Prior to tooth extraction each patient received a resin bond prefabricated bridge to provide immediate provisional prosthodontics reconstruction after tooth extraction. Finally all patients received fixed prosthodontic restoration ie PFM crowns on each implant.

Case 1 (Figs. 1–14)

A 51-years-old male patient was referred with generalised periodontitis for a comprehensive periodontal treatment. At the upper right lateral incisor an advanced periodontal defect was registered with tooth mobility III. Deep periodontal pocket depths were assessed on the adjacent teeth. After flap elevation a two-wall crater-like defect was found on the mesial aspect of the tooth with a missing buccal bony plate. After tooth extraction the previously described step-by-step technique was carried out. As a result of surgery 1, completed with a soft tissue augmentation, the alveolar ridge configuration allowed the implant placement with simultaneous further augmentation. During abutment connection the 3-D reconstruction of alveolar ridge was observed around the previously supracrestally placed implant. This surgical approach allowed a re-entry procedure of adjacent periodontal defects, they presented bone fill and complete regeneration of earlier one-wall defects. After soft tissue healing a screw retained temporary crown was placed in situ to form an ideal emergence profile for further three months. This situation was then transferred to the cast to make the permanent PFM crown.

Case 2 (Figs. 15–17)

A 54-year-old male patient presented an advanced vertical bony defect on the mesial aspect of the right upper central incisor with excessive tooth mobility. After tooth extraction an alveolar site development was performed in the same way like described before without any bone substitute material. The second surgical phase was the previously described soft tissue augmentation. During surgery 3 implant placement with simultaneous hard tissue augmentation was proceeded by. As an augmentation material BDX was used covered by a slow resorbable membrane. The width and height of the alveolar ridge became sufficient to promote long term stability for the implant borne restoration.

Case 3 (Figs. 18–20)

The third case is a 49-year-old male patient who presented the left upper lateral incisor with an advanced horizontal-vertical bony defect on its mesial aspect. Following tooth extraction an
alveolar ridge preservation was performed and implant placement with simultaneous augmentation as described before. The augmentation material was BDX covered by a titanium membrane. The final soft tissue augmentation was followed by the prosthodontic rehabilitation, a PFM crown was established.

After the cause related periodontal therapy the patients developed proper individual oral hygiene measures. Each patients' gingival and plaque index was under 20 per cent, the mean of PI was 7.7 per cent, and 12.7 per cent of GI, respectively. At baseline the mean periodontal PD of the neighbouring teeth was 3.97mm, GR 0.88mm and CAL 4.78 mm. After the healing of the third stage the neighbouring teeth’s PD was 2.55, GR 2.13 and CAL 4.58. The clinical parameters showed slight improvement although the number of cases does not offer any statistical analysis. The intrabony component of the adjacent teeth is being eliminated clinically and radiologically and during re-entry. Optimal hard and soft tissue conditions were found around implants.

Discussion

The long term success of implant therapy depends on the adequate volume of bone around the implant site. The lack of mineralised tissue is an unfavourable condition for a predictable implant therapy (Lekholm et al., 1986). Another key factor for maintaining the alveolar crest level around implant is the quantity and morphology of the covering soft tissues. Implant therapy in the aesthetic zone needs a comprehensive consideration of several contributing factors. In periodontal patients implant placement is even more challenging. Periodontally compromised teeth often show disadvantageous bone loss, especially if the buccal bony plate is missing. For achieving predictable healthy periodontal conditions tooth extraction cannot be avoided. Several techniques and materials have recently been developed for the purpose of extraction socket preservation. There are controversial data in the literature concerning the possible role of bone fillers in alveolar socket preservation. Several different techniques have been described to achieve this goal. There is a substantial ambiguity in the literature regarding the predictability of these kind of techniques. Several authors report positive findings on the effect of bone substitutes (Froum et al., 2002). Different animal studies (Araújo & Lindhe, 2009; Fickl et al., 2009) suggest that bone filler materials can to a certain extent retard
«Nobel Biocare’s All-on-4 procedure is the key driver for the growth of our practice. It’s an affordable treatment plan that patients are likely to accept.»

Dr. Cyrus Nikkhah, BDS, FDSRCS (Eng), M ClinDent (Prosthodontics), MRD RCS (Prosthodontics) (Eng), Devonshire House, Cambridge

Reasons for high case acceptance
- Single surgical appointment
- Fixed teeth delivered same day
- Significantly less expensive than conventional treatments
- Clinically proven
- Often eliminates the need for bone grafts, sinus lifts and nerve repositioning
- High stability with only four implants

Call +44 (0) 208 756 3300 (UK), 1800 677306 (Ireland) or visit nobelbiocare.com/all-on-4
or modify the resorption of the buccal bone. It is also the matter of discussion whether these grafting materials in the alveoli have an active role in the modulation of alveolar bone formation or they only slow down the vestibular bone resorption (Araújo & Lindhe, 2009). Other studies suggest the utilisation of membranes. The biodegradable membranes have recently been increasingly applied because of its incorporation in the host tissues and providing better soft tissue healing. If it is exposed to the oral cavity the healing is less compromised and the risk of infection is low (Lekovic et al., 1997, 1998). Tooth extraction always presents conditions where a complete wound closure is questionable. If the membrane is not able to maintain enough space for regeneration it should be supported with some grafting material (Case 3). Similar ridge configuration was achieved when using bone fillers (see our Case 1) or without any bone substitute (see our Case 2) (Chiapasasco et al., 2006). The use of non-resorbable membrane became the gold standard for GBR with a need of 3-D reconstruction of the edentulous ridge (Simion et al., 2007). One of the disadvantages of this technique that the gingival flaps should be sutured over the membrane in a way that a primary wound healing without any flap dehiscence could be achieved. Membrane exposure may severely compromise wound healing and also the consecutive regeneration and final treatment outcomes (Hämmerle et al., 1998). The soft tissue coverage is a prerequisite for the management of hard tissue augmentation and for the final aesthetics of the implant borne restoration. The three demonstrated clinical cases showed favourable hard and soft tissue alteration during the third surgery. During this step-wise surgical approach we managed to develop an ideal implant position in all the three dimensions covered by the required amount of hard and soft tissues (Buser et al., 2004). Literature data suggest that survival and success rate of implants partially or fully placed into augmented bone is comparable to implants placed into non regenerated alveolar ridges (Mayfield et al., 1998; Zitzmann et al., 2001b). The biological mechanism of the alveolar regeneration is not fully investigated and understood and the role of this issue in the healing of neighbouring teeth’s periodontal intrabony defects even needs further examination._

Fig. 19 The optimally positioned Ti-membrane covering the augmented area.

Fig. 20 The final prosthetic rehabilitation.

contact info

Dr Peter Windisch

Phone/Fax: +36 1 267 4907
peter.windisch@gmail.com